

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 22206

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any FIVE of the following:	10
	a)	State whether the function is even or odd,	02
	ĺ	If $f(x) = 3x^4 - 2x^2 + \cos x$	
	Ans	$f(x) = 3x^4 - 2x^2 + \cos x$	1/2
		$\therefore f(-x) = 3(-x)^4 - 2(-x)^2 + \cos(-x)$	
		$\therefore f(-x) = 3x^4 - 2x^2 + \cos x$	1/2
		$\therefore f(-x) = f(x)$	1/2
		: function is an even function	1/2
			02
	b)	If $f(x) = x^2 + 6x + 10$ find $f(2) + f(-2)$	
	Ans	$f(2) = (2)^2 + 6(2) + 10 = 26$	1/2
		$f(-2) = (-2)^2 + 6(-2) + 10 = 2$	1/2
		$\therefore f(2) + f(-2) = 26 + 2$	
		= 28	1
		J.	
	c)	Find $\frac{dy}{dx}$ if $y = \log x + \log_5 x + \log_5 5$	02
	Ans	$y = \log x + \log_5 x + \log_5 5$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	$\therefore y = \log x + \frac{\log x}{\log 5} + \log_5 5$ $\therefore \frac{dy}{dx} = \frac{1}{x} + \frac{1}{x \log 5} + 0$ $\therefore \frac{dy}{dx} = \frac{1}{x} + \frac{1}{x \log 5}$	2
	d) Ans	Evaluate $\int \sin^2 x dx$ $\int \sin^2 x dx$	02
		$= \frac{1}{2} \int 2\sin^2 x dx$ $= \frac{1}{2} \int (1 - \cos 2x) dx$ $= \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + c$	1
	e) Ans	Evaluate $\int (x^a + a^x + a^a) dx$ $\int (x^a + a^x + a^a) dx$	02
		$= \frac{x^{a+1}}{a+1} + \frac{a^x}{\log a} + a^a x + c$	2
	f) Ans	Find the area under the curve $y = e^x$ bet ⁿ the ordinates $x = 0$ and $x = 1$ Area $A = \int_a^b y \ dx$	02
		$=\int_{0}^{1}e^{x}dx$	1/2
		$= \left[e^{x}\right]_{0}^{1}$	1/2
		$=e^{1}-e^{0}$	1/2
		= <i>e</i> -1	1/2
		OUR CENTERS:	

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code: 22206	
Subject Name: Applied Mathematics	Model Answer	Subject Code: 22206)

5	ubject	Name: Applied Mathematics <u>Model Answer</u> Subject Code: 2	2206
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	g)	An unbaised coin is tossed 5 times. Find the probability of getting three heads.	
	Ans	$n=5, p=\frac{1}{2}, q=\frac{1}{2}, r=3$	
		$\therefore P(r) = {}^{n}C_{r}p^{r}q^{n-r}$	
		$\therefore P(3) = {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{5-3}$	1
		$P(3) = \frac{5}{16}$ or 0.3125	1
2.		Attempt any <u>THREE</u> of the following:	12
	a)	If $x^2 + y^2 = 4xy$ find $\frac{dy}{dx}$ at $(2,-1)$	04
	Ans	$x^2 + y^2 = 4xy$	
		$\therefore 2x + 2y \frac{dy}{dx} = 4\left(x \frac{dy}{dx} + y.1\right)$	2
		$\therefore 2x + 2y \frac{dy}{dx} = 4x \frac{dy}{dx} + 4y$	
		$\therefore (2y - 4x) \frac{dy}{dx} = 4y - 2x$	
		$\therefore \frac{dy}{dx} = \frac{4y - 2x}{2y - 4x}$	1
		$\therefore \frac{dy}{dx} = \frac{2y - x}{y - 2x}$	
		at $(2,-1)$	
		$\therefore \frac{dy}{dx} = \frac{2(-1)-2}{-1-2(2)}$	
		$\therefore \frac{dy}{dx} = \frac{4}{5}$	1
	b)	If $x = a(1 + \cos \theta)$, $y = a(1 - \cos \theta)$ find $\frac{dy}{dx}$	04
	Ans	$x = a(1 + \cos \theta)$, $y = a(1 - \cos \theta)$	
	<u> </u>	OUR CENTERS:	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics <u>Model</u>	Answer Subject Code:	22206
--	----------------------	-------

Jubje	Ct Ivaiii	e. Applied Mathematics <u>Model Allswer</u> Subject Code. ZZ	.200
Q.	Sub	Answers	Marking
No.	Q. N.	Allsweis	Scheme
2.	b)	$\therefore \frac{dx}{d\theta} = -a\sin\theta \qquad , \qquad \frac{dy}{d\theta} = a\sin\theta$	1+1
	Ans	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{-a\sin\theta}$	1
		$\therefore \frac{dy}{dx} = -1$	1
	c)	A metal wire of 40 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.	04
	Ans	$2x + 2y = 40$ $\therefore x + y = 20$ $\therefore y = 20 - x$	
		Area $A = xy$ $\therefore A = x(20-x)$	1
		$\therefore A = 20x - x^2$ $\therefore \frac{dA}{dx} = 20 - 2x$	1
		$\therefore \frac{d^2A}{dx^2} = -2$	1/2
		Consider $\frac{dA}{dx} = 0$ 20 - 2x = 0	
		$\therefore x = 10$ at $x = 10$ $\therefore \frac{d^2 A}{dx^2} = -2 < 0$	1
		∴ Area is maximum at $x = 10$ ∴ $x = 10$, $y = 10$	1/2
	d)	A telegraph wire hangs in the form of a curve $y = a \cdot \log \sec \left(\frac{x}{a}\right)$ where 'a' is constant.	04
		Show that the curvature at any point is $\frac{1}{a} \cdot \cos\left(\frac{x}{a}\right)$. OUR CENTERS:	
		KALYAN DOMRIVLI THANE NERIIL DADAR	Page 4 of 17

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

-		e. Applied Mathematics <u>Model Allswei</u> Subject code.	2200
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	d)	$y = a \cdot \log \sec \left(\frac{x}{a}\right)$ $\therefore \frac{dy}{dx} = a \frac{1}{\sec \left(\frac{x}{a}\right)} \sec \left(\frac{x}{a}\right) \tan \left(\frac{x}{a}\right) \frac{1}{a}$ $dy = a \cdot \log \sec \left(\frac{x}{a}\right)$	1
		$\therefore \frac{dy}{dx} = \tan\left(\frac{x}{a}\right)$ $\therefore \frac{d^2y}{dx^2} = \sec^2\left(\frac{x}{a}\right)\frac{1}{a}$	1
		$\therefore \text{ Radius of curvature } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$ $= \frac{\left[1 + \tan^2\left(\frac{x}{a}\right)\right]^{\frac{3}{2}}}{\sec^2\left(\frac{x}{a}\right)^{\frac{3}{2}}}$ $= \frac{a\left[\sec^2\left(\frac{x}{a}\right)\right]^{\frac{3}{2}}}{\sec^2\left(\frac{x}{a}\right)}$ $= \frac{a\sec^3\left(\frac{x}{a}\right)}{\sec^2\left(\frac{x}{a}\right)}$	1/2
		$\therefore \text{ Radius of curvature } \rho = a \sec\left(\frac{x}{a}\right)$	1
		$\therefore \text{ curvature } = \frac{1}{\rho} = \frac{1}{a} \cos\left(\frac{x}{a}\right)$	1/2
3.		Attempt any <u>THREE</u> of the following:	12
	a)	Find the equation of tangent and normal to the curve $y = x(2-x)$ at point (2,0)	04
<u> </u>			

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics M	<u> Model Answer</u>	Subject Code:	22206
-------------------------------------	----------------------	---------------	-------

Jubje	Joe Hail	ile. Applied Mathematics <u>Model Allswei</u> Subject Code.	206
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	a)	y = x(2-x)	
	Ans		
		$\therefore \frac{dy}{dx} = 2 - 2x$	1/2
		at $(2,0)$	
		$\therefore \frac{dy}{dx} = 2 - 2(2)$	
		$\therefore \frac{dy}{dx} = -2$	1/2
			1/2
		∴ slope of tangent, $m = -2$	
		Equation of tangent at $(2,0)$ is	1/2
		y-0=-2(x-2)	
		$\therefore y = -2x + 4$ $\therefore 2x + y - 4 = 0$	1/2
			1/2
		\therefore slope of normal, $m' = \frac{-1}{m} = \frac{1}{2}$	
		Equation of normal at $(2,0)$ is	1/2
		$y-0=\frac{1}{2}(x-2)$	72
		$\therefore 2y = x - 2$	1/2
		$\therefore x - 2y - 2 = 0$	/2
	b)	Find $\frac{dy}{dx}$ if $y = a^x + x^a + a^a + x^x$	04
	Ans	$y = a^x + x^a + a^a + x^x$	
		Let $u = x^x$	
		Taking log on both sides,	
		$\therefore \log u = \log x^x$	
		$\therefore \log u = x \log x$	1
		$\therefore \frac{1}{u} \frac{du}{dx} = x \frac{1}{x} + \log x.1$	1
		$\therefore \frac{1}{u} \frac{du}{dx} = 1 + \log x$	
		$\int_{0}^{\infty} u dx$	
<u> </u>	<u> </u>	OUD CENTEDS.	<u> </u>

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22206
-----------------------------------	--------------	---------------	-------

		-	2200
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)	$\therefore \frac{du}{dx} = u \left(1 + \log x \right)$	
		$\therefore \frac{du}{dx} = x^x \left(1 + \log x \right)$	1
		$y = a^{x} + x^{a} + a^{a} + x^{x}$ $dy \qquad x = a^{-1} + a + x^{2}$	2
		$\therefore \frac{dy}{dx} = a^x \log a + ax^{a-1} + 0 + x^x \left(1 + \log x\right)$	
		$\therefore \frac{dy}{dx} = a^x \log a + ax^{a-1} + x^x \left(1 + \log x\right)$	
	c)	If $y = \tan^{-1} \left(\frac{5x}{1 - 6x^2} \right)$ find $\frac{dy}{dx}$	04
	Ans	$y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right)$	
		$\therefore y = \tan^{-1}\left(\frac{3x + 2x}{1 - (3x)(2x)}\right)$	1
		$\therefore y = \tan^{-1}(3x) + \tan^{-1}(2x)$	1
		$\therefore \frac{dy}{dx} = \frac{1}{1 + (3x)^2} (3) + \frac{1}{1 + (2x)^2} (2)$	2
		$\therefore \frac{dy}{dx} = \frac{3}{1+9x^2} + \frac{2}{1+4x^2}$	
	d)	Evaluate $\int \frac{(x-1)e^x}{x^2 \cdot \sin^2\left(\frac{e^x}{x}\right)} dx$	04
	Ans	$\int \frac{(x-1)e^x}{x^2 \cdot \sin^2\left(\frac{e^x}{e^x}\right)} dx$	
		Put $\frac{e^x}{x} = t$ $\therefore \frac{xe^x - e^x 1}{x^2} dx = dt$	
		$\therefore \frac{xe^x - e^x 1}{x^2} dx = dt$	1
		$\therefore \frac{xe^{-e-1}}{x^2} dx = dt$	1

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics N	Model Answer	Subject Code:	22206
-------------------------------------	--------------	---------------	-------

		<u></u>	2200
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$\therefore \frac{e^x(x-1)}{x^2} dx = dt$ $\int \frac{1}{\sin^2 t} dt$ $= \int \cos ec^2 t dt$ $= -\cot t + c$	1 1
4.		$=-\cot\left(\frac{e^{x}}{x}\right)+c$	1 12
	a)	Evaluate $\int \frac{1}{x + \sqrt{x}} dx$	04
	Ans	$\int \frac{1}{x + \sqrt{x}} dx$ $= \int \frac{1}{\sqrt{x} (\sqrt{x} + 1)} dx$ Put $\sqrt{x} + 1 = t$	
		$\therefore \frac{1}{2\sqrt{x}} dx = dt$ $\therefore \frac{1}{\sqrt{x}} dx = 2dt$	1
		$=2\int \frac{1}{t} dt$	1
		$=2\log t + c$	1
		$=2\log\left(\sqrt{x}+1\right)+c$	1
	b)	Evaluate $\int \frac{dx}{5 + 4\cos x}$	04
	Ans	$\int \frac{dx}{5 + 4\cos x}$ OUR CENTERS:	

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics Mo	odel Answer	Subject Code:	22206
--------------------------------------	-------------	---------------	-------

•			200
Q.	Sub	Anguara	Marking
No.	Q.N.	Answers	Scheme
4.	b)	Put $\tan \frac{x}{2} = t$, $dx = \frac{2dt}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$ $\int \frac{\frac{2dt}{1+t^2}}{5+4\left(\frac{1-t^2}{1+t^2}\right)}$ $\int \frac{2dt}{1+t^2} dt$	1
		$= \int \frac{2dt}{5(1+t^2)+4(1-t^2)}$ $= 2\int \frac{dt}{5+5t^2+4-4t^2}$ $= 2\int \frac{dt}{t^2+9}$ $= 2\int \frac{dt}{t^2+3^2}$	1
		$=2\frac{1}{3}\tan^{-1}\frac{t}{3}+c$	1
		$=\frac{2}{3}\tan^{-1}\left(\frac{\tan\frac{x}{2}}{3}\right)+c$	1
	c)	Evaluate $\int x \cdot \tan^{-1} x dx$	04
	Ans	$\int x \cdot \tan^{-1} x dx$ $= \tan^{-1} x \int x dx - \int \left(\int x dx \right) \frac{d}{dx} \left(\tan^{-1} x \right) dx$	1
		$= \frac{x^2}{2} \tan^{-1} x - \int \frac{x^2}{2} \frac{1}{x^2 + 1} dx$	1
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{x^2 + 1} dx$ $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{(x^2 + 1) - 1}{x^2 + 1} dx$	1
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{x^2 + 1} \right) dx$	

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22206

Ans $\int \frac{\sec^2 x}{(1+\tan x)(2-\tan x)} dx$ Put $\tan x = t$ $\therefore \sec^2 x dx = dt$ $\therefore \int \frac{1}{(1+t)(2-t)} dt$ $\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$ $\therefore 1 = A(2-t) + B(1+t)$ $\therefore Put \ t = -1, \ A = \frac{1}{3}$ Put $t = 2, \ B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{1/3}{1+t} + \frac{1/3}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{1/3}{1+t} + \frac{1/3}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$	Q. No.	Sub Q.N.	Answers	Marking Scheme
Ans $\int \frac{\sec^2 x}{(1+\tan x)(2-\tan x)} dx$ Put $\tan x = t$ $\therefore \sec^2 x dx = dt$ $\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$ $\therefore 1 = A(2-t) + B(1+t)$ $\therefore \text{Put } t = 1, A = \frac{1}{3}$ Put $t = 2, B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{1/3}{1+t} + \frac{1/3}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{1/3}{1+t} + \frac{1/3}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$	4.	c)	$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) + c$	1
Put $\tan x = t$ $\therefore sec^2 x dx = dt$ $\therefore \int \frac{1}{(1+t)(2-t)} dt$ $\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$ $\therefore 1 = A(2-t) + B(1+t)$ $\therefore \text{Put } t = -1$, $A = \frac{1}{3}$ Put $t = 2$, $B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{1/3}{1+t} + \frac{1/3}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{1/3}{1+t} + \frac{1/3}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$		d)		04
$\therefore \operatorname{sec}^{2}x dx = dt$ $\therefore \int \frac{1}{(1+t)(2-t)} dt$ $\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$ $\therefore 1 = A(2-t) + B(1+t)$ $\therefore \operatorname{Put} \ t = -1, \ A = \frac{1}{3}$ $\operatorname{Put} \ t = 2, \ B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{1/3}{1+t} + \frac{1/3}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{1/3}{1+t} + \frac{1/3}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$		Ans	$\int \frac{\sec^2 x}{(1+\tan x)(2-\tan x)} dx$	
$\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$ $\therefore 1 = A(2-t) + B(1+t)$ $\therefore \text{ Put } t = -1, A = \frac{1}{3}$ $\text{Put } t = 2, B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$			$\therefore \operatorname{s} \operatorname{ec}^2 x dx = dt$	1
$\therefore \text{Put } t = -1 \text{ , } A = \frac{1}{3}$ $\text{Put } t = 2 \text{ , } B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$				1/2
Put $t = 2$, $B = \frac{1}{3}$ $\therefore \frac{1}{(1+t)(2-t)} = \frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}$ $\therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}\right) dt$ $= \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c$				1/2
$ \therefore \int \frac{1}{(1+t)(2-t)} dt = \int \left(\frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}\right) dt $ $ = \frac{1}{3} \log(1+t) + \frac{1}{3} \frac{\log(2-t)}{(-1)} + c $ $ = \frac{1}{3} \log(1+\tan x) - \frac{1}{3} \log(2-\tan x) + c $			Put $t = 2$, $B = \frac{1}{3}$	1/2
$= \frac{1}{3}\log(1+t) + \frac{1}{3}\frac{\log(2-t)}{(-1)} + c$ $= \frac{1}{3}\log(1+\tan x) - \frac{1}{3}\log(2-\tan x) + c$				
				1
			$= \frac{1}{3}\log(1+\tan x) - \frac{1}{3}\log(2-\tan x) + c$	1/2
e) Evaluate $\int_{0}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+4}} dx$		e)	Evaluate $\int_{0}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+4}} dx$	04

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22206

Jubje	ot mann	e. Applied Mathematics <u>Model Allswel</u> Subject code.	.200
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e) Ans	Let $I = \int_{0}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+4}} dx$ (1) $I = \int_{0}^{5} \frac{\sqrt{9-(5-x)}}{\sqrt{9-(5-x)} + \sqrt{5-x+4}} dx$	1
		$I = \int_{0}^{5} \frac{\sqrt{9-5+x}}{\sqrt{\sqrt{9-5+x}} + \sqrt{9-x}} dx$ $I = \int_{0}^{5} \frac{\sqrt{4+x}}{\sqrt{\sqrt{4+x}} + \sqrt{9-x}} dx$ $Add (1) \text{ and (2)}$ $I = I = \int_{0}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+4}} dx + \int_{0}^{5} \frac{\sqrt{4+x}}{\sqrt{\sqrt{4+x}} + \sqrt{9-x}} dx$ $2I = \int_{0}^{5} \frac{\sqrt{9-x} + \sqrt{4+x}}{\sqrt{9-x} + \sqrt{x+4}} dx$	1
		$\therefore 2I = \int_{0}^{5} \sqrt{9 - x} + \sqrt{x + 4} dx$ $\therefore 2I = \int_{0}^{5} 1 dx$ $\therefore 2I = [x]_{0}^{5}$ $\therefore 2I = 5 - 0$ $\therefore I = \frac{5}{2}$	½ 1
		$\frac{1}{2}$	1/2
5.		Attempt any <u>TWO</u> of the following:	12
	a)	Find the area bounded by curves $y^2 = x$ and $x^2 = y$	
	Ans	$y^{2} = x \qquad(1)$ $x^{2} = y$ $\therefore eq^{n}.(1) \Rightarrow x^{4} = x$ $\therefore x^{4} - x = 0$ $\therefore x^{3}(x-1) = 0$	
		$\therefore x = 0,1$ Area $A = \int_{a}^{b} (y_1 - y_2) dx$ OUR CENTERS:	1

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22206
-----------------------------------	--------------	---------------	-------

Jubje	ct ivaiii	e. Applied Mathematics <u>Model Allswei</u> Subject Code.	.200
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	a)	$\therefore A = \int_{0}^{1} \left(\sqrt{x} - x^{2} \right) dx$	1
		$\therefore A = \left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^3}{3}\right)^1$	2
		$\therefore A = \left(\frac{(1)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(1)^{3}}{3}\right) - 0$	1
		$\therefore A = \left(\frac{2}{3} - \frac{1}{3}\right)$ $\therefore A = \frac{1}{3} \text{or} 0.333$	1
	1.		06
	b)	Attempt the following	03
	i)	Solve the differential equation $\frac{dy}{dx} + y \tan x = \cos^2 x$	03
	Ans	$\frac{dy}{dx} + y \tan x = \cos^2 x$	
		$\therefore \text{ Comparing with } \frac{dy}{dx} + Py = Q$	
		$P = \tan x$, $Q = \cos^2 x$	1
		Integrating factor $IF = e^{\int \tan x dx} = e^{\log(\sec x)} = \sec x$	1
		Solution is,	1
		$y.IF = \int Q.IFdx + c$	1
		$\therefore y \sec x = \int \cos^2 x \sec x dx$	
		$\therefore y \sec x = \int \cos^2 x \frac{1}{\cos x} dx$	
		$\therefore y \sec x = \int \cos x dx$	
		$\therefore y \sec x = \sin x + c$	1
		OUR CENTERS :	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

,	22200
Q. Sub No. Q.N. Answers	Marking Scheme
No. Q.N. Find order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt[4]{y + \left(\frac{dy}{dx}\right)^2}$ Ans $\frac{d^2y}{dx^2} = \sqrt[4]{y + \left(\frac{dy}{dx}\right)^2}$ $\therefore \text{ Order = 2}$ Degree = 4	Scheme 1 1 1
OTB CENTERS.	

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22206
-----------------------------------	---------------------	---------------	-------

Jubjec		e: Applied Mathematics <u>Model Answer</u> Subject Code:	22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	c) Ans	Acceleration of a moving particle at the end of 't' seconds from the start of its motion is $(5-2t) m/s^2$. Find it's velocity at the end of 3 seconds and distance travelled by it during that period, if its initial velocity is $4 m/s$. Acceleration $= 5-2t$	06
		$i.e. \ a = \frac{dv}{dt} = 5 - 2t$	1/2
		$\therefore \int dv = \int (5 - 2t) dt$	1
		$\therefore v = 5t - t^2 + c_1$ when $t = 0$, $v = 4$ $\therefore c_1 = 4$ $\therefore v = 5t - t^2 + 4$	1/2
		when $t = 3$ $v = 5(3) - (3)^2 + 4 = 10 \ m/s$	1
		$v = \frac{dx}{dt} = 5t - t^2 + 4$ $dx = (5t - t^2 + 4)dt$ $dx = \int (5t - t^2 + 4)dt$	1/2
		$\therefore x = \frac{5t^2}{2} - \frac{t^3}{3} + 4t + c_2$ at $t = 0$, $x = 0$ $\therefore c_2 = 0$	1 1/2
		$\therefore x = \frac{5t^2}{2} - \frac{t^3}{3} + 4t$ at $t = 3$	
		$\therefore x = \frac{5(3)^2}{2} - \frac{(3)^3}{3} + 4(3) = 25.5 m$	1
6.		Attempt any <u>TWO</u> of the following:	
	a)	Attempt the following	
	i)	The probability that a man aged 65 will live to 75 is 0.65. What is the probability that out of 10 men which are now 65, 7 will live to 75.	
	Ans	Given $p = 0.65$, $q = 1 - 0.65 = 0.35$, $n = 10$, $r = 7$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.		$\therefore p(r) = {^{n}C_{r}(p)^{r}(q)^{n-r}}$	
	a) i)	$p(7) = {}^{10}C_7(0.65)^7(0.35)^{10-7}$ $p(7) = {}^{10}C_7(0.65)^7(0.35)^{10-7}$	2
		$p(7) = C_7(0.03) (0.33)$ $p(7) = 0.2522$	1
		$p(\tau) = 0.2322$	1
	a) ii)	The probability that a bomb dropped from a Plane will strike the target is $\frac{1}{5}$. If six bombs are dropped,	03
		find the probability that exactly two will strike the target.	
	Ans	Given $p = \frac{1}{5} = 0.2$, $q = 1 - 0.2 = 0.8$	
		n=6 , $r=2$	
		$\therefore p(r) = {^{n}C_{r}(p)^{r}(q)^{n-r}}$	2
		$\therefore p(2) = {}^{6}C_{2}(0.2)^{2}(0.8)^{6-2}$	1
		$\therefore p(2) = 0.2458$	1
	b)	If 2% of the electric bulbs manufactured by company are defective,	06
		find the probability that in a sample of 100 bulbs.	
		(i) 3 bulbs are defective,	
		(ii) At the most two bulbs will be defective. $(e^{-2} = 0.1353)$	
	Ans	p = 2% = 0.02 , $n = 100$	
		∴ mean $m = np$	1
		$\therefore m = 100 \times 0.02 = 2$	
		Poisson's distribution is,	
		$P(r) = \frac{e^{-m} \cdot m^r}{r!}$	
		(i)3 bulbs are defective $\therefore r = 3$	
		$\therefore P(3) = \frac{e^{-2}(2)^3}{3!}$	1
		P(3) = 0.1804	
		(ii) At the most two bulbs will be defective $\therefore r = 0,1,2$	
		OUR CENTERS :	

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics	<u>Model Answer</u>	Subject Code:	22206
-----------------------------------	---------------------	---------------	-------

- a, -		inder Answer Subject code.	.200
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	b)	$\therefore P(r) = P(0) + P(1) + P(2)$	
		$-2(2)^{0} -2(2)^{1} -2(2)^{2}$	2
		$\therefore P(0) = \frac{e^{-2}(2)^0}{0!} + \frac{e^{-2}(2)^1}{1!} + \frac{e^{-2}(2)^2}{2!}$	2
		0! 1! 2! = 0.6767	1
	c)	In a test on 2000 electric bulbs, it was found that the life of particular make was normally	06
		distributed with average life of 2040 hours and standard deviation of 60 hours. Estimate the	
		number of bulbs likely to burn for:	
		(i) between 1920 hours and 2160 hours.	
		(ii) more than 2150 hours.	
		Given that: $A(2) = 0.4772$	
		A(1.83) = 0.4664	
	Ans	Given $\bar{x} = 2040$ $\sigma = 60$ $N = 2000$	
		i) For $x = 1920$	
		$z = \frac{x - \overline{x}}{\sigma} = \frac{1920 - 2040}{60} = -2$	1/2
		For $x = 2160$	1/2
		$z = \frac{x - x}{\sigma} = \frac{2160 - 2040}{60} = 2$	
		σ 60 $\therefore p(\text{between } 1920 \text{ and } 2160) = A(\text{between } -2 \text{ and } 2)$	
		= A(-2) + A(2) $= A(2)$	1/2
		= 0.4772 + 0.4772	
		= 0.1772 + 0.1772 $= 0.9544$	1
		\therefore No. of $bulbs = N \cdot p$	
		$= 2000 \times 0.9544 = 1908.8 \approx 1909$	1/2
		<i>ii</i>) For $x = 2150$	
		$z = \frac{x - \overline{x}}{100} = \frac{2150 - 2040}{100} = 1.83$	1/2
		σ 60	
		$\therefore p \text{ (more than 2150)} = A \text{ (more than 1.83)}$	
		=0.5-A(1.83)	
		=0.5-0.4664	1
		OUR CENTERS :	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

		<u></u>	
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	$\therefore p \text{ (more than } 2150) = 0.0336$	1
		$\therefore \text{ No. of students} = N \cdot p = 2000 \times 0.0336$	
		= 67.2 ≈ 67	1/2
		<u>Important Note</u>	
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	